Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires
نویسندگان
چکیده
We report a strategy to significantly improve the ductility and achieve large superelastic and shape memory strains in polycrystalline Cu–Al–Ni shape memory alloys that are normally brittle. We use a liquid-phase Taylor wire forming process to obtain microwires of 10–150 m diameter with a bamboo grain structure. The reduction of grain boundary area, removal of triple junctions, and introduction of a high specific surface area in the wire decrease constraints on the martensitic transformation, and permit both superelasticity and stress-assisted two-way shape memory with recoverable strains as high as 6.8%. © 2009 American Institute of Physics. doi:10.1063/1.3257372
منابع مشابه
Thermomechanical behavior at the nanoscale and size effects in shape memory alloys
" Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Shape memory alloys (SMA) und...
متن کاملShape Memory and Huge Superelasticity in Ni–Mn–Ga Glass-Coated Fibers
Ni–Mn–Ga polycrystalline alloy fibers with diameters of 33 μm are reported to exhibit significantly improved ductility and huge superelastic and shape memory strains in comparison to conventional brittle bulk polycrystalline alloys. Particularly, the recoverable strain of the Ni54.9–Mn23.5–Ga21.6 fiber can be as high as 10% at 40 ◦C. Such optimized behavior has been achieved by a suitable fabri...
متن کاملANISOTROPIC SUPERELASTICITY OF TEXTURED Ti-Ni SHEET
A recently developed crystal-mechanics-based constitutive model for polycrystalline shape-memory alloys (Thamburaja and Anand [1]) is shown to quantitatively predict the in-plane anisotropy of superelastic sheet Ti-Ni to reasonable accord. Keywords— Phase transformations, Constitutive equations, Finite-elements, Mechanical testing.
متن کاملFabrication of Spiral Stent with Superelastic/ Shape Memory Nitinol Alloy for Femoral Vessel
Stent is a metal mesh tube for opening the obstructed vessels of the body. Ni-Ti alloy is a suitable metal for fabrication of stent due to its potential for applying the appropriate stress and strain to the vessel walls. In this study, super-elastic Nitinol wire was used to build stent samples usable to open femoral vessel. Ageing was performed at 500°C for different periods of time to determin...
متن کاملDirect observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.
Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ trans...
متن کامل